Page **1** of **4**

I M.Tech - II Semester - Special Supplementary Examinations March 2019

DATA WAREHOUSING AND DATA MINING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Code: CSCS2T1

Answer any FIVE questions. All questions carry equal marks

1. a) Briefly explain the following data mining functionalities.

- i) Classification and prediction
- ii) Association analysis
- iii) Cluster analysis
- b) Explain nominal, ordinal, interval and ratio attributes. Classify the following attributes as nominal, ordinal, interval or ratio.
 8 M
 - i) Time in terms of AM or PM.
 - ii) Bronze, Silver, and Gold medals as awarded at the Olympics.
 - iii) ISBN numbers for books.
 - iv) Number of patients in a hospital.
- 2. a) In real-world data, tuples with missing values for some attributes are a common occurrence. Describe various methods for handling this problem.
 7 M

Max Marks: 70

6 M

- b) What is data integration? Explain the issues to consider during data integration. 7 M
- 3. a) Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where charge is the fee that a doctor charges a patient for a visit.8 M
 - i) Draw a schema diagram for the above data warehouse using star schema.
 - ii) Starting with the base cuboid [day; doctor; patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2004?
 - b) With suitable example, illustrate how data can be generalized using attribute oriented induction?6 M
- 4. a) What are the general strategies for cube computation? Explain.7 M
 - b) How is discovery driven cube exploration mechanism a desirable way to mark interesting points among large number of cells in a data cube. Explain.
 7 M
- 5. a) What is constraint-based frequent pattern mining? Explain. 6 M
 - b) A database has nine transactions as shown below. Let $min_sup = 20\%$ and $min_conf = 80\%$.

TID	Items Bought
T1	$\{ I_1, I_2, I_5 \}$
T2	$\{ I_2, I_4 \}$
T3	$\{ I_2, I_3 \}$
T4	$\{ I_1, I_2, I_4 \}$
T5	$\{ I_1, I_3 \}$
T6	$\{ I_2, I_3 \}$
T7	$\{ I_1, I_3 \}$
T8	$\{ I_1, I_2, I_3, I_5 \}$
T9	$\{ I_1, I_2, I_3 \}$

i) Find all frequent itemsets using Apriori algorithm. 5 M

- ii) Find all strong association rules for the frequent itemset { I_1, I_2, I_5 }. 3 M
- 6. a) Consider the following set of training examples. 6 M

	-		
Instance	Classification	a 1	a 2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т
F	<u> </u>		

- i) What is the entropy of this collection of training examples with respect to the target function classification?
- ii) What is the information gain of **a2** relative to these training examples?
- b) Explain classification by back propagation. 8 M

- 7. a) Illustrate k-means clustering algorithm with suitable example. Also state its strengths and weaknesses.8 M
 - b) What is model based clustering? Explain briefly. 6 M
- 8. a) Explain any two statistical approaches for outlier detection. 8 M
 - b) What are the two types of proximity-based outlier detection methods? Explain.6 M